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nguage, humans have to discover words from a continuous signal. Streams of
artificial monotonous speech can be readily segmented based on the statistical analysis of the syllables'
distribution. This parsing is considerably improved when acoustic cues, such as subliminal pauses, are added
suggesting that a different mechanism is involved. Here we used a frequency-tagging approach to explore the
neural mechanisms underlying word learning while listening to continuous speech. High-density EEG was
recorded in adults listening to a concatenation of either random syllables or tri-syllabic artificial words, with
or without subliminal pauses added every three syllables. Peaks in the EEG power spectrum at the
frequencies of one and three syllables occurrence were used to tag the perception of a monosyllabic or tri-
syllabic structure, respectively. Word streams elicited the suppression of a one-syllable frequency peak,
steadily present during random streams, suggesting that syllables are no more perceived as isolated
segments but bounded to adjacent syllables. Crucially, three-syllable frequency peaks were only observed
during word streams with pauses, and were positively correlated to the explicit recall of the detected words.
This result shows that pauses facilitate a fast, explicit and successful extraction of words from continuous
speech, and that the frequency-tagging approach is a powerful tool to track brain responses to different
hierarchical units of the speech structure.

© 2008 Elsevier Inc. All rights reserved.
Introduction

While adults easily find the words in a sentence from their native
language, the task becomes impossible when they listen to an
unknown language (Pilon, 1981). This difficulty is due to the absence
of robust physical cues at the boundaries of words inside utterances
(Echols, 1993; Hayes and Clark, 1970; Pisoni and Luce, 1986), as spaces
observed in written language. Computation of transitional probabili-
ties between adjacent syllables has been proposed as one solution to
extract words from the continuous speech stream. Since transitional
probabilities are higher between two syllables within words than
between two syllables encompassing different words, a word
boundary would be placed when transitional probabilities system-
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atically drop. Indeed, infants and adults have been shown able to
exploit this cue in order to extract words from an artificial language
(Saffran et al., 1996a,b). It was also shown that this computation is not
restricted to contiguous syllables but can be realized on non-adjacent
segments, either on the consonantal tier and the vowel tier of the
words (Bonatti et al., 2005; Newport and Aslin, 2004) or between non
adjacent syllables (De Diego Balaguer et al., 2007; Endress and Bonatti,
2007; Pena et al., 2002).

Natural speech is not a monotonous signal and is organized into
cohesive prosodic units, such as intonational and phonological
phrases, that reflect the morpho-syntactic organization of the
sentences. These units encompass one or several words and their
boundaries are signaled by acoustic cues, such as pitch decrease, final
lengthening or pauses. These cues are spontaneously used by listeners
to facilitate word access and limit word recognition to the segments
within the prosodic unit. For example, responses to detect a word
target (e.g. “chat” in French) are slower when neighboring words
present in the lexicon have to be discarded (e.g. “chagrin”, “chateau”,
etc.). This happens when there is a local lexical ambiguity within a
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phonological phrase like in [un chat grincheux] where both words
“chat” and “chagrin” are activated before resolving the ambiguity.
However, this delay is not observed when the local lexical ambiguity
straddles a phonological phrase boundary like in [son grand chat]
[grimpait…]. In this case, lexical access is limited to the domain of the
phonological phrase and “chat” has no competitors (Christophe et al.,
2004). Similarly using artificial streams, Shukla et al. (2007) have
observed that the computation of transitional probabilities between
adjacent syllables was limited within prosodic constituents and that
the correct identification of artificial words significantly dropped from
68% to 45% when high transitional probabilities between adjacent
syllables straddled over two prosodic constituents. Pena et al. (2002)
also reported that word segmentation was facilitated, requiring a
shorter exposure when a subliminal pause was inserted at the end of
the words embedded in the stream. Thus, acoustical cues, especially
those used to mark prosodic boundaries, can modulate and facilitate
statistical information computation.

In order to investigate the neural correlates of word learning from
continuous speech and the respective role of statistical distribution
and of acoustical cues, we recorded high-density EEG in adult
participants exposed to four experimental conditions using different
continuous speech streams. Two of the streams conveyed statistical
information (Word streams) and the other two (Random streams)
consisted of a random concatenation of the same syllables used in the
word streams. In Word streams, words were defined as structured tri-
syllabic items in which the first syllable -A- predicted the occurrence
of the third one -C- (see Table 1). Thus, the transitional probability
between these syllables was 1, while the ones between adjacent
syllables within and between words were considerably lower (0.33 to
0.5). Acoustic information was manipulated by adding a sub-liminal
pause (25 ms) every three syllables in one stream of each condition
(Random and Word).

Numerous studies on word segmentation in continuous streams
share an intrinsic limitation: computations during the learning
phase are classically inferred from recognition of words presented
afterwards during a test phase (Pena et al., 2002; Saffran et al.,
1996b). This precludes the study of on-line segmentation computa-
tions and transfers the question from on-line segmentation to
recognition of memorized items. Strategic effects related to the
Table 1
Material used to generate the artificial speech streams

Continuous speech Test items

Stream ‘Words’ ‘Words’ ‘Rule-words’ ‘Part-words’

1 puloki puloki pumiki lokimi
pudaki pudaki pufoki lobemi
punuki punuki pubeki loRapu
folobe folobe fokibe dabepu
fodabe fodabe fopube daRapu
fonube fonube fomibe dakifo
miloRa miloRa mipuRa nuRafo
midaRa midaRa mifoRa nukifo
minuRa minuRa mibeRa nubemi

2 tomudu tomudu tolidu mufeto
togadu togadu tobadu muvoto
topidu topidu tofedu muduli
bamuvo bamuvo balivo gaduba
bagavo bagavo bafevo gafeba
bapivo bapivo baduvo gavoto
limufe limufe lidufe piduli
ligafe ligafe litofe pivoli
lipife lipife libafe pifeba

List of ‘words’, ‘rule words’ and ‘part words’ used during learning and test phase. Each
stream was generated by concatenating nine ‘words’ belonging to three different
families characterized by an AxC structure (see Materials and methods). Each
participant was tested with both streams either in the no-pause condition or in the
pause condition. Streams were counterbalanced across participants. The same syllables
were used in the Random streams.
statistical properties of the test items themselves may also appear
during the test phase. Brain-imaging techniques, such as electro-
encephalography, can be proposed to follow learning on-line during
continuous speech presentation. However, several difficulties are
encountered. First, the absence of on-line information about the
success of learning makes it difficult to isolate its brain correlates.
Second, learning during several minutes of exposure might be erratic
and fickle, some items being segmented as possible words at one
time, then others at another time, blurring an average response
computed across all words presentation. Third, the computation of
event-related potentials (ERPs) is problematic because the conti-
nuous nature of the stream complicates the estimation of a proper
baseline. Finally, the continuous stream of information provided by
the acoustic stream decreases the amplitude of the brain responses,
and thus the signal to noise ratio. Nevertheless, different studies
have proposed several ERP components that might signal word-
segmentation, the N1, the P2 and the N400. Sanders et al. (2002)
observed an increase of N1 for the first syllable of previously learned
words. This N1 increase for word-onset has not been always
recorded in following studies (Cunillera, 2008; Cunillera, 2006;
Sanders and Neville, 2003a,b) and seems to be related to an
attentional effect, being present when subjects already know the
words and are expecting them in the stream. Cunillera et al. (2006,
2008) did not observe a N1 effect but rather report a P2 increase for
stressed syllables embedded in non-sense words but not for stressed
syllables embedded in a random stream. They did not observe any
N1 nor P2 enhancement for monotonous streams without stressed
syllables although the percentage of correctly detected words in that
unstressed condition was similar to the performance in the stressed
condition. De Diego Balaguer et al. (2007) also noted a P2 increase
along the 4 min of exposure to an artificial language. This effect was
more important in good than in poor learners. Thus, as for N1, P2
increase seems to be present when subjects are expecting a precise
word onset once they have identified the words. A N400 increase
appears to be a more robust and automatic index of word segmenta-
tion. It has been observed consistently when non-sense words are
compared to unlearned words or to non-words in the artificial
language (Cunillera et al., 2006, 2008; De Diego Balaguer et al., 2007;
Sanders et al., 2002). De Diego Balaguer et al. (2007) suggested that
this N400 modulation represents the construction of a pre-lexical
trace for new words. In their experiment, the N400 appeared before
the increase in P2 amplitude.

In order to track and clearly dissociate brain responses to different
units of the continuous speech structure, and to overcome the
baseline problem, we propose here to use an alternative approach to
ERPs: a “frequency-tagging” analysis. This analysis exploits the
property of the brain electromagnetic activity to respond to a visual
or auditory stimulus presented periodically at a specific temporal
frequency by resonating at the same frequency during the stimulation
period (steady-state response, hereafter indicated as SSR) (Picton
et al., 2003). This effect is manifested in the electric/magnetic
recordings by a sharp peak in the power spectrum of the signal at
that specific frequency. Recent studies (Ahissar et al., 2001; Luo and
Poeppel, 2007) show that the oscillatory cortical activity related to
speech processing reflects the spectro-temporal organization of
speech. The syllabic rate is mirrored in the envelope of the cortical
responses recorded from the auditory cortices at least at intelligible
speech rate (Abrams et al., 2008; Ahissar et al., 2001). These results
suggest that our frequency-tagging analysis may be successful in
tracking and discriminating brain responses to different units of the
speech structure. We hypothesized that the monotonous presentation
of regularly concatenated syllables would give rise to a peak of power
at the frequency of the syllable occurrence, as described by Abrams
et al. (2008), Ahissar et al. (2001) and Luo and Poeppel (2007). If after
some exposure, syllables are bound to adjacent syllables and
ultimately grouped in tri-syllabic words, we expected to record a
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peak of power at the frequency of three syllables. Steady-state power
responses at the frequencies of occurrence of single syllables, of bi-
syllabic and tri-syllabic words were thus evaluated to tag the
perception of monosyllabic, bi-syllabic or tri-syllabic structure in the
stream, respectively. To have a behavioral control of the task,
participants were asked to write the words they had perceived after
3 and 6 min of exposure of each stream, and in order to compare our
results to previous behavioral experiments, they were also asked to
classify different types of tri-syllabic items as “words” or not in a test
phase following the 9 min of exposure to the word streams. Parts of
this work have been published previously in abstract form (Buiatti
et al., 2007).

Materials and methods

Participants

Thirteen healthy French monolingual university students (6 males,
age range: 18–28 years) were tested, but only 9 subjects had sufficient
non artefacted data for the analyses of all four streams. All subjects
gave written consent to undertake the experiment and received 20
euros in compensation.

Sound stimuli for the learning phase

Twostreams for the experimental conditions (hereafter namedWord
streams) and two for control conditions (hereafter named Random
streams)were generated in a text version as the concatenationof a series
of consonant–vowel syllables. Word streams were constructed by the
concatenation of nine tri-syllabic items (hereafter named ‘words’).
‘Words’ belonged to three ‘families’, comprising 3 ‘words’ each. A family
was characterizedbyafixedfirst and third syllable (AxCstructure),while
the second syllable was different for each word (Table 1). For instance,
the family /FO_BE/ consisted of the ‘words’ /FOLOBE/, /FODABE/ and /
FONUBE/. ‘Words’were pseudo-randomly concatenated in two different
streams with the restriction that neither the consecutive repetition of
the same ‘word’ nor of two members of the same family was allowed
(e.g. FONUBEPULOKIMINUDA PUDAKIMILODAFONUBE…). Thus, the
transitional probability (TP) between non-adjacent syllables (first
and third) was equal to 1 within ‘words’, and was between 0.33 and
0.5 between ‘words’. For adjacent syllables, the TP was between 0.33
and 0.5 both within and between ‘words’. Random streams were
constructed by a pseudorandom concatenation of 36 different
syllables constructed by the combination of the same consonants
and same vowels that were used in Word streams. Neither repetition
of the same syllable within any three syllables, nor repetition of the
same tri-syllabic sequence was allowed. Random streams did not
contain any word, part-word or rule-word used in Word streams. The
TP between adjacent and non-adjacent syllables in the Random
streams was lower than 0.1 without systematic changes at the
boundaries of the tri-syllabic items.

Word and Random streams did not contain real French words
longer than one syllable. Each one of the streamswas generated in two
versions, with and without pauses. For streams with pauses, a 25 ms
silence was added every three syllables. Several previous studies
showed that 25 ms pauses are not explicitly perceived, thus both
streams with and without pauses are perceived as continuous speech
(Echols et al., 1997; Pena, 2002; Phillips, 1999).

Text versions of the streams were divided in three shorter parts
containing the same number of tri-syllables in order to obtain around
3 min of coarticulated speech. Each part was transformed to sound
with MBROLA, a speech synthesizer based on the concatenation of
natural diphones produced here by a French female speaker. All
streams (22050 Hz, mono, 16 bits) were monotonous and nonsense.
Duration (116 ms) and pitch (200 Hz) were identical for each
phoneme, and the intensity range was similar for each syllable. The
total duration was 3.13 min for the streams without pauses and
3.24 min for the streams with pauses.

Sound stimuli for the test phase

Three types of 9 tri-syllabic items were synthesized with MBROLA:
1) ‘Words’ consisted of the 9 tri-syllabic ‘words’ presented during the
learning stream; 2) ‘Part-words’ comprised 9 tri-syllabic items
constructed by concatenation of two syllables of a ‘word’ with a
syllable from an adjacent ‘word’ in the stream. Part-words were thus
also present in the learning streams but spanned word boundaries.
Hence, they had higher adjacent TPs but lower non-adjacent TPs than
‘words’; 3) ‘Rule-words’ comprised 9 tri-syllabic items with an AxC
structure. Rule-words were constructed by replacing the second
syllable of each ‘word’ by the first or the third syllable of a ‘word’
from a different family. Thus TPs between non-adjacent syllables was
equal to 1 as for words but TPs between adjacent syllables was equal to
zero. Contrary to ‘words’, rule-words never occurred in the learning
stream. Items' duration was 696 ms (116 ms⁎6 phonemes).

Because EEG signals are sensitive to low-level acoustic properties,
we controlled for the phonological properties of the different
syllables. In Pena et al. (2002), the first syllable of the ‘words’ was
always a plosive, while the second syllable was a liquid, a fricative or a
plosive. Newport and Aslin (2004) criticized this phonetic structure
suggesting that word recognition was based on a phonetic grouping
rather than on statistical computations between non-adjacent
syllables. Because of possible auditory confusion between close
phonemes and of the small number of phonemes within each
phonetic category, we could not restrict the consonants to one
category but we controlled that there was no systematic bias between
phonemes at the different syllable positions (see Table 1).

Experimental procedure

All participants were tested in a silent room, wearing earphones.
The experiment was presented on a Pentium-based PC using the
experimental software EXPE6 (Pallier et al., 1997). Each participant
was consecutively exposed to each one of four artificial streams
representing the two experimental conditions (Word and Random)
presented in two variants (with pauses and without pauses). Each
condition used a different speech stream. The order of the conditions
and the two possible versions of the stream within each condition
were counterbalanced across subjects.

Participants were notified that they would listen to samples of an
artificial language containing imaginary ‘words’ that they must discover.
In order to have a behavioral report of the ongoingword-learning process
and because it is impossible to ask participants to avoid blinking during
9 min, the learning phase was cut in three blocks of roughly 3 min each.
After the first and second block, participants were asked to write down
the ‘words’ they had discovered. After 2min of silence, the paperwith the
list of written ‘words’ was removed from the desk, and the stream was
started again. No feedbackwas given. At the end of the 9min of exposure
to Word streams, a recognition test composed by the presentation of 64
tri-syllabic items was proposed to the participants. They were asked to
press a yes/no button, as fast as possible, to indicate whether the item
was, or not, a ‘word’ in the artificial language. Button positions were
swapped at the 33rd trial. On the contrary, in Random conditions, after
the third block of the learning phase participants performed the same
task as after the first and second block because of the huge number of
possible tri-syllabic “words” contained in the streams.

EEG recordings

EEG was recorded from 129 electrodes (EGI, USA) referenced to the
vertex. Scalp voltages were amplified, digitized at 125 Hz, low-pass
filtered at 40 Hz, and stored on the hard disk of a Power-MacIntosh 7100.
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Data analysis

Data analyses were performed with custom-made software based
on MATLAB (Natick, MA) and on the Fieldtrip toolbox (http://www.ru.
nl/fcdonders/fieldtrip). ERP and normalized power topographies were
plotted using the EEGLAB toolbox (Delorme and Makeig (2004),
http://www.sccn.ucsd.edu/eeglab/).

Frequency tagging analysis

EEG data from each block of 3 min were segmented in epochs of
approximately 12 s overlapping for 5/6 of their length. In order to
obtain a high frequency resolution with one bin centered on one-,
two-, and three-syllable frequency, epoch lengths corresponded to
exactly 18 tri-syllabic words (12.528 s for streams without pauses,
12.960 s for streams with pauses), i.e. an integer number of one-
syllable, two-syllables or three-syllables items, resulting in fre-
quency bins of ≈0.078 Hz. Epochs containing amplitudes exceeding
±120 μV were rejected. This relatively high artifact rejection
threshold eliminates the epochs with the largest artifacts while
keeping epochs containing slow eye movements, since the latter
have a broad power spectrum and therefore do not affect narrow-
band steady-state responses (Srinivasan and Petrovic, 2006). The
resulting signals were mathematically referenced to the average of
the 129 channels.

For each electrode, the Fourier transform Fm (f) of each epoch was
calculated using a fast Fourier transform (FFT) algorithm (MATLAB,
Natick, MA). The power spectrum was calculated from these Fourier
coefficients as the average over epochs of the single-epoch power
spectrum: Pm(f)=Fm(f)×Fm⁎ (f). Target frequencies were selected as
the inverse of the duration of one syllable (f=4.31 Hz), two syllables
(f=2.15 Hz) and three syllables (f=1.44 Hz) for the streams without
pauses, and adding to such duration one third of a pause (f=4.17 Hz),
two thirds of a pause (f=2.08 Hz) and a pause (f=1.39 Hz) for the
streams with pauses. Normalized power (NP) at each target frequency
was calculated as the ratio between the power spectrum at the target
frequency and the average power spectrum at 14 neighboring
frequency bins excluding the ones adjacent to the peak frequency
bin. NP of the whole 9 min stream was computed by calculating the
NP on the power spectrum of each block and then averaging over
blocks. In order to control for the effect of the typical 1/f-like low-
frequency background EEG spectrum, NP was compared with the
normalized power obtained by subtracting from the power spectrum
at the peak frequency the power-law fit of the power spectrum in the
neighboring bins, but no significant difference was found. The
potential confound of harmonics (components oscillating at frequency
values multiple of 1-syllable, 2-syllable and 3-syllable frequencies)
was controlled by checking subject by subject in all conditions
whether 1-syllable peaks appeared in the same channels where
2-syllable or 3-syllable peaks emerged, and this was never the
case. Also, no relevant peak emerged at the first harmonic of the
1-syllable and 3-syllable frequency.

ERP analysis

Continuous EEG data from each block of 3 min were band-pass
filtered in the frequency band 0.5–8 Hz and segmented in epochs of
1024 ms starting 100 ms before each tri-syllabic word onset (filtered
dataset). To identify epochs containing artifacts, the original
continuous data were segmented as above with no prior filtering
(non-filtered dataset), and epochs containing amplitudes exceeding ±
70 μV and/or visually evident artifacts were marked as bad. In order
to avoid artifacts ‘leaking’ to neighboring epochs after filtering, both
epochs marked as bad in the non-filtered dataset and epochs
contiguous to such bad epochs were rejected in the filtered dataset.
This procedure was possible because of the large number of epochs
(250 in each 3 min block). The band-pass filtered EEG signals were
then mathematically referenced to the average of the 129 channels.
ERPs were computed by averaging the EEG across all epochs and all
blocks in each condition, and (as in De Diego Balaguer et al., 2007)
subtracting the baseline over the 100 ms preceding tri-syllabic word
onset. A control ERP analysis was also performed by using a standard
0.5–30 Hz band-pass filtering, and following the same procedure
described above.

Statistical analysis

The significance of the difference between Random and Word
conditions was established both for NP and ERP values by means of a
nonparametric randomization test (Nichols and Holmes, 2002) called
Cluster Randomization Analysis (CRA) (Maris and Oostenveld, 2007)
as implemented in the Fieldtrip toolbox (http://www.ru.nl/fcdonders/
fieldtrip). This test effectively controls the type I error rate in a
situation involving multiple comparisons (129 channels by 129 time
points for ERP spatio-temporal arrays and 129 channels by 1 time
point for NP spatial arrays) by clustering neighboring (channel, time)-
pairs that exhibit the same effect. The first step of CRA is to identify for
each time point channels whose t statistics exceeds a critical value
when comparing two conditions channel by channel (pb0.05, two-
sided). The goal of this step is to identify channels with effects
exceeding a threshold for the subsequent cluster analysis, i.e. it is not
required that the power values to be tested are normally distributed.
To correct for multiple comparisons, channel-time points that exceed
the critical value and neighboring in the channel array (separated by
less than 5 cm) and/or in the time array are grouped as a cluster. Each
cluster is assigned a cluster-level statistic whose value equals the sum
of each channel-time point t statistics. Thus, the cluster-level statistics
depends on both the extent of the cluster and the magnitude of each
channel-time point t statistics that belong to this cluster. The Type-I
error rate for the complete spatio-temporal set of channels and time
points is controlled by evaluating the cluster-level statistics under the
randomization null distribution of the maximum cluster-level
statistics. By controlling the Type-I error rate for this single test
statistic, the multiple comparison problem is solved, simply because
there is only a single test statistic, instead of one test statistic for every
channel and time point. The randomization null distribution is
obtained by randomizing the order of the data of the two conditions
within every participant (in our study, 512 permutations=2^number
of subjects). The p-value is estimated as the proportion of the
randomization null distribution in which the maximum cluster-level
test statistics exceeds the observed maximum cluster-level test
statistic.

Results

Behavioral results

Written responses during the learning phase
We expected that participants should report more tri-syllabic

items if a correct segmentation occurs. Thuswe submitted the number
of syllables of the written words reported after 3 and 6 min of
exposure to a repeated measure ANOVA with Condition (Word and
Random), Pause (pause and nopause), Time (3 and 6min) and Number
of Syllables (3 vs others) as within subject factors. There was a
significant interaction Number by Condition (F(1,8)=12.2, p=0.008)
and Number by Pause (F(1,8)=6.24, p=0.037): Participants reported
more tri-syllabic words in Word conditions than in Random condi-
tions and in streams with pauses than in streams without pauses.
Post-hoc analyses revealed that participants reported a higher
number of tri-syllabic words rather than other word lengths only
during exposure to Word stream with pauses (F(1,8)=5.14, p=0.05;
from 0 to 8 words, 2.83 in average; Fig. 1).

http://www.ru.nl/fcdonders/fieldtrip
http://www.ru.nl/fcdonders/fieldtrip
http://www.sccn.ucsd.edu/eeglab/
http://www.ru.nl/fcdonders/fieldtrip
http://www.ru.nl/fcdonders/fieldtrip


Fig. 2. Power spectrumof the EEG signal in a central midline electrode of one participant
(subject 2) calculated from thewhole 9min period of exposure to artificial speech in the
four different conditions to illustrate the method and the main results. Power bars at
target frequency bins are colored in blue (one-syllable frequency bin ≈4.2 Hz), black
(two-syllable frequency bin ≈2.1 Hz) and red (three-syllable frequency bin ≈1.4 Hz). At
one-syllable frequency, power peaks clearly emerge in both Random conditions (top
row), while they disappear in bothWord conditions (bottom row). Conversely, a peak at
three-syllable frequency is clearly visible in the Word condition with pauses only
(bottom right-hand panel).

Fig.1. Themean number of one to six syllables written items reported by free recall after
3 (blue) and 6 (red)min of the learning phase is plotted for the four different conditions:
Random without pauses (Rnd No Pause), Random with pauses (Rnd Pause), Word
without pauses (Word No Pause) and Word with pauses (Word Pause).
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Recognition test
This test was presented only after Word streams. Participants had

to classify three types of tri-syllabic items as words or not: 1) Words
present in the stream, 2) Rule-words that were structurally similar to
words but were not present in the stream, 3) Part-words created by
the concatenation of one syllable from a word with two syllables
from another word (see Materials and methods for a more detailed
description). The percentage of classification of these stimuli as
‘word’ was submitted to a repeated-measures analysis of variance
(ANOVA) with Greenhouse–Geisser correction, with Type of item
(‘word’, ‘part-word’ and ‘rule-word’) and Pause (pause and nopause)
as within subjects factors. A main effect of Type of item was
observed (F(1.9,13.8)=22.8; pb0.00004) because after both types of
stream, ‘word’ items were significantly more often identified
as words than ‘rule-words’ (Word stream with pauses: 77.8% vs
42.6%, F(1,7)=13.8; pb0.007; Word stream without pauses: 67.3% vs
43.2%, F(1,8)=19.8; pb0.002). Words were also significantly more
recognized as words than 'part-words' (Word stream with pauses:
77.8% vs 39.4%, F(1,7)=13.6; pb0.008; Word stream without pauses:
67.3% vs 46.3%, F(1,8)=9.8; pb0.01). Responses to ‘rule-words’ and
‘part-words’ were similar after both types of streams and the
interaction Type of item X Pause was not significant.

In summary, subjects were able to discover the artificial words
embedded in the structured word streams. Pauses added at word
boundaries improve the detection of tri-syllabic items during the
learning exposure and improved performance to correctly classified
words and non words during the test phase.

Neural correlates of word learning: Frequency-tagging analysis

The power spectrum of the EEG signal was computed for each
electrode on narrow-band frequency bins (bin size ≈0.078 Hz)
including those corresponding to one syllable (f≈4.2 Hz), two syllables
(f≈2.1 Hz) and three syllables (f≈1.4 Hz). As seen in Fig. 2 presenting
data from a single subject, peaks are clearly visible at these
frequencies. Typically, peaks at a frequency corresponding to a single
syllable occur during Random streams, while tri-syllabic peaks mainly
emerged in the Word streamwith pauses. Each peak was restricted to
only one frequency bin, and the predominant peaks were never
recorded at non-expected frequency bins. In order to compare the
responses of different subjects in different conditions, normalized
power (NP) was calculated for each subject and condition at one-
syllable, two-syllables and three-syllables tag frequencies (see
Materials and methods for details). Typical values of NP associated
with the largest peaks are in the (2–4) range.
The topographies of the grand-averaged NP computed over the
9min of each stream are shown in Fig. 3 (top andmiddle row) for each
frequency of interest. The highest NP values associated to one-syllable
frequency (Fig. 3 first and fourth column) occurred in Random streams
for both types of streams, with and without pauses. This one-syllable
steady-state response clustered around the vertex and above the
temporal areas. Intensity and topography of this response was very
reproducible across subjects. By contrast, quite surprisingly no
response was observed at this frequency in any Word stream, with
and without pauses. At the frequency of two-syllables (Fig. 3 second
and fifth column), no clear peak of power was visible in any condition;
on the contrary, it is worth noting that NP values for the Word stream
with pauses are all negative.

Critically, the NP topography at the frequency of three syllables
(Fig. 3 third and sixth column) revealed a widespread steady-state
response in the Word stream with pauses only, whereas no evident
response emerged in the other conditions. Peaks of power in theWord
condition with pauses clustered in front of the vertex and at posterior
locations. This pattern was more variable across subjects and its peak
magnitude somewhat lower than the one-syllable power peaks in
Random streams.

In summary, a one-syllable steady-state response was recorded for
both Random streams but not for Word streams. A three-syllables
steady-state response was present only for the Word stream with
pauses whereas no peak at any frequency (not even at one-syllable
frequency) was observed for the Word stream without pause.

To compute the statistical significance of the effects described
above, we used CRA, a nonparametric randomization test (Maris and
Oostenveld, 2007) that effectively controls the type I error rate in a
situation involving multiple comparisons (such as 129 channels) by
clustering neighboring channel pairs that exhibit the same effect (see
Materials and methods). CRA was computed over 9-min NP scalp
arrays between Random and Word conditions separately for streams
with and without pauses. CRA results show that the aforementioned
observations are all statistically significant. During streams without
pauses, the one-syllable steady-state response was significantly
suppressed around the vertex for Word streams relative to Random
streams (pb0.02); no significant difference emerged at the two other
frequencies of interest (Fig. 3, bottom left row). By contrast, when



Fig. 3. Topography of grand-averaged NP computed over the whole 9 min period of exposure to artificial speech without pauses (left panel) and with pauses (right panel). Each panel
shows the NP topography of the Random (Rnd) stream (first row), of the Word stream (second row) and of the difference (Word–Rnd, third row) for one-syllable (f≈4.2 Hz, first
column), two-syllable (f≈2.1 Hz, second column) and three-syllable (f≈1.4 Hz, third column) frequencies. Power peaks at one-syllable frequency are observed in central electrodes in
both Random streams, but not inWord streams. Three-syllable power peaks emerge only in theWord streamwith pauses. In the third row, channels belonging to significant clusters
(CRA, pb0.05) are marked with black points. Stars over topographies having significant clusters indicate pb0.05 (⁎) or pb0.01 (⁎⁎).
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pauses were present, Word streams elicited a significant suppression
of the two-syllables steady-state response in a left parietal cluster
(pb0.01) and a strong enhancement of the three-syllable steady-state
response in a left anterior and a right occipital cluster (pb0.01) with
respect to Random streams with pauses (Fig. 3, bottom right row). A
tendency to suppress the one-syllable steady-state response in the
central cluster was also observed (pb0.07).

A fast learning

Because a couple of studies (De Diego Balaguer et al., 2007; Pena et
al., 2002) suggested that 3 min of exposure were sufficient to discover
the word in the stream with pauses, we computed the same analyses
as above over the first 3 min of learning phase. Results were very
similar to the ones obtained over 9 min of exposure (Fig. 4). A clear
three-syllable steady-state responsewas observed in theWord stream
with pauses only. This enhancement emerged in a cluster similar to
the one arising after 9 min, and was statistically significant with
respect to the Random stream with pauses (pb0.02). When pauses
were present, suppression of two-syllable steady-state responses was
also highly significant (Word streamvs Random stream, pb0.01). One-
syllable steady-state responses were already visible in both random
conditions, and were significantly suppressed in the Word condition
without pauses (pb0.02), while this suppression was incomplete in
the stream with pauses (Word stream vs Random stream, pN0.14).

Correlation between EEG power and behavior

In order to directly test the link between tri-syllabic steady-state
responses and word learning, correlation between tri-syllabic power
peaks and the number of correctly reported words was evaluated. As a
global measure of tri-syllabic power peaks, the average of NP
corresponding to an increase in power (NPN1) was computed for
each subject and for the first (1–3 min) and the second block (4–
6 min) of exposure to the Word stream with pauses on the cluster
where tri-syllabic NP significantly differed between Word stream and
Random stream with pauses (Fig. 3, bottom right-hand topography).
Average of NP during both the first (1–3 min) and the second (4–
6 min) block significantly correlated (R=0.56, pb0.025) with the sum
of the number of correct words that subjects reported both after the
first (1–3 min) and the second (4–6 min) block, respectively (Fig. 5).
This correlation tended to be significant when the analysis was
restricted to the first 3 min (R=0.68, pb0.095) and became significant
in the second block (filled diamonds in Fig. 5; R=0.77, pb0.016).

By contrast, the EEG power did not correlate with the perfor-
mances during the test phase (correlation between tri-syllabic SSR in
the relevant cluster and percentage of correct responses to Words in
the test phase: R=0.03, pN0.9).

ERP analysis

Next, we investigated whether the tri-syllabic oscillations arising
in Word streams with pauses are characterized by a distinct temporal
profile time-locked to tri-syllabic words. EEG data were band-pass
filtered in the range 0.5–8 Hz and averaged in synchrony with tri-
syllabic word onsets to obtain word-locked ERPs (see Materials and
methods). Such ERPs provide a temporal signature of the tri-syllabic
oscillations phase-locked to tri-syllabic words, and enable a compar-
ison with previous ERP studies. The low-pass filter value (8 Hz) was
chosen because we were mostly interested in the low frequency



Fig. 4. Topography of grand-averaged NP computed over the first 3 min of exposure to artificial speechwithout pauses (left panel) andwith pauses (right panel). Each panel shows the
NP topography of the Random (Rnd) stream (first row), of the Word stream (second row) and of the difference (Word–Rnd, third row) for one-syllable (f≈4.2 Hz, first column), two-
syllable (f≈2.1 Hz, second column) and three-syllable (f≈1.4 Hz, third column) frequencies. In the third row, channels belonging to significant clusters (CRA, pb0.05) aremarked with
black points. Stars over topographies having significant clusters indicate pb0.05 (⁎) or pb0.01 (⁎⁎). Results are very similar to those relative to the whole 9 min stream (cf. Fig. 3).
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activity that might sustain the three-syllables SSR, and also to avoid
interference from the alpha (≈10 Hz) activity, which was relatively
high during such a long and repetitive stimulation.

Comparison between Word and Random conditions from streams
with pauses revealed a large difference centered at 400 ms after word
onset (Fig. 6, right-hand column). Since we had no prior expectation
on the time interval of a potential effect, CRA was computed in the
Fig. 5. Subject-by-subject relationship between the average tri-syllabic SSR in the
cluster of interest (see Results) during the first (open diamonds) and the second (filled
diamonds) block of 3 min of exposure to the Word stream with pauses and the
corresponding number of correct written words at the end of each block.
whole time window 0–696 ms. CRA revealed that such difference was
statistically significant and distributed on an anterior (positive
difference, pb0.03) and posterior (negative difference, pb0.05)
cluster, both extending in the range 256–464 ms (Fig. 6, right-hand
topography). Importantly, the sum of the t statistics over such clusters
reaches its maximum at 400 ms, suggesting a response similar to a
N400. No significant difference arose in any other time interval. In
particular, therewas no significant difference at the N1 or P2 latencies,
nor in the whole 0–696 ms time window when comparing Word and
Random conditions in streams without pauses (Fig. 4, left-hand
column). All these results were confirmed in a control ERP analysis
using a standard 0.5–30 Hz filtering (Fig. S1).

To prove that the ERP peak at 400 ms really identifies the temporal
profile of the tri-syllabic oscillations time-locked to word onsets, we
calculated the correlation coefficient for theWord streamwith pauses
between the tri-syllabic NP values averaged over the CRA cluster
indicated in Fig. 3 (bottom right-hand topography) and the sum of the
absolute values of the ERPs averaged over the two CRA clusters
indicated in Fig. 6 (right-hand topography) at 400ms. Such correlation
was indeed significant: R=0.85, pb0.015.

Discussion

Frequency tagging of pertinent speech units

In this study, SSRs labeled by frequency tags corresponding to one-,
two- and three-syllable words were used to investigate on-line the
neural mechanisms underlying word learning from continuous
speech while manipulating their statistical regularities and acoustic
cues. First, we observed that a one-syllable SSR was steadily recorded
in Random streams emerging in most subjects on electrodes around



Fig. 6. ERPs of band-pass filtered (0.5–8 Hz) EEG data for Random (blue lines) and Word (red lines) streams without pauses (left column) and with pauses (right column), averaged
over the anterior (top row) and posterior (bottom row) cluster emerging from CRA (see Results). The middle row shows the topography of the difference betweenWord and Random
ERPs in streams without pauses (left column) and with pauses (right column) averaged over the time interval 384–416 ms, corresponding to the maximum of the CRA difference
statistics for the streamwith pauses. CRA anterior and posterior clusters are plotted as black dots in the right-hand topography. The difference between Word and Random streams
with pauses is significant in the time interval 256–464 ms in both clusters, while no significant difference arises in streams without pauses.
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the vertex and temporal areas (Fig. 3). This observation is in
agreement with the results of Ahissar et al. 2001 which showed
using MEG that the cortical auditory response oscillated with the
speech rate. It is also consistent with Luo and Poeppel (2007), who
hypothesized that cortical speech analysis is based on the modulation
of inherent cortical rhythms in the theta range (4–8 Hz) (the syllable
rate is ≈4.2 Hz in our experiment). Using simultaneous EEG-fMRI
recordings, spontaneous oscillations in ranges that match the
rhythmic properties of the speech signal have been recorded within
the auditory cortices (Giraud et al., 2007). These authors also report
spontaneous oscillations in the gamma range in the left auditory
cortex and they hypothesize a relation between this frequency and
phonemic processing. Here, although consonants and vowels were
regularly presented, having the same duration, there was no increase
of power at the phoneme frequency (8.6 Hz). As stimulation with
clicks at 40 Hz and even 100 Hz easily induce strong SSRs, this absence
of power at the phoneme frequency cannot be related to a
physiological limit in evoked cortical oscillations but might rather
be due to speech perception mechanisms, as syllable, and not
phoneme, is the basic perceptive unit for speech perception at least
in French native speakers (Bertoncini and Mehler, 1981; Mehler et al.,
1981).
By contrast, the presence of tri-syllabic words (i.e. AxC) in the
stream induced the suppression of one-syllable steady state response,
bothwhen pauses were present and absent. This suppression suggests
that frequency tagging is not dominated by low-level processing but
can be modulated by higher levels of stimulus integration. This is
congruent with the results reported in binocular rivalry stimulation
(Tononi et al., 1998) in which the amount of power at the flickering
frequency of two different monocular stimuli increased with the
conscious perception of one or the other stimulus although the
physical properties of the binocular stimulation remained unchanged.

Finally, a tri-syllabic SSR was recorded when subliminal pauses
were added in the Word streams. This effect cannot be due to the
regular addition of subliminal pauses every three syllables because no
tri-syllabic SSR was recorded during Random streams with pauses. On
the contrary, we hypothesize that this specific SSR is induced by the
on-line segmentation of the embedded words as more tri-syllabic
words were reported in that condition, and critically, the amplitude of
the tri-syllabic power response was significantly correlated with the
number of correctly reported words (Fig. 5). In addition to the tri-
syllabic SSR, a suppression of bi-syllabic SSR was observed for that
stream, suggesting that word learning induces both an enhancement
of power at the frequency of the discovered word, and an inhibition of
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power at frequencies associated to alternative words with different
lengths. The suppression of the one-syllable SSR in word streams as
the robust tri-syllabic SSR in AxC with pauses suggests that oscillatory
responses are not limited to the most basic unit (syllable) as already
reported (Abrams et al., 2008; Ahissar et al., 2001; Luo and Poeppel,
2007), but are sensitive to the different units of the speech structure
and are amplified by directed attention to a specific level involving
multi-syllabic units.

The topographies of the three-syllable and the one-syllable SSR
were different (the former present over more anterior frontal and
more posterior occipital electrodes than the latter, see the significant
differences between random and word streams in Fig. 4). Although it
is uncertain to precisely locate the brain regions involved, this
difference suggests at least that different populations of neurons fire
in synchrony with the detection of either syllables or words, and that
we are not recording with that method a generic response (i.e.
conscious detection of segments) but a specific image of the network
involved in the syllable or word learning computation. MEG studies
(Abrams et al., 2008; Ahissar et al., 2001; Luo and Poeppel, 2007), as
the study of Giraud et al. (2007) combining EEG and fMRI, have
suggested that the cortical responses modulated by syllabic rate
originate from Heschl gyri. McNealy et al. (2006) using fMRI observed
that activity increases in the left superior temporal regionwhile adults
were listening to artificial language streams relative to random
streams. Among the regions sensitive to the structure of the stream,
a cluster in the left STG displayed activity correlated with behavioral
word recognition suggesting that this region might be involved in
word segmentation. Dehaene-Lambertz et al. (2006) observed a
temporal gradient in BOLD responses along the superior temporal
regions when adults listened to sentences. The authors proposed that
this temporal gradient of activation might reflect a nested organiza-
tion of processing speech units with progressively longer time-
window of integration. The different topographies observed here for
the syllable and the word SSR might be related to a shifting of activity
from Heschl gyrus toward more ventral regions of the superior
temporal lobe, reflecting the first stages of this nested structure.

Word segmentation

Our second important result is that brain responses crucially
differed when subliminal acoustic pauses were added to the word
stream: In that case only, a tri-syllabic SSR was recorded. It was also
only in that stream that a N400-like potential was recorded, that was a
main contributor to the tri-syllabic SSR. N400-like potentials seem to
be triggered by stimuli whose physical forms can be used to access to
semantic knowledge about the referent of the stimulus (Halgren,
1990). A N400 increase appears to be a robust index of word access
being reported now in numerous experiments having studied words
learning in artificial language streams (Cunillera et al., 2006, 2008; De
Diego Balaguer et al., 2007; Sanders et al., 2002). As in the experiment
of Pena et al. (2002) and De Diego Balaguer et al. (2007), word
segmentation appears very early during exposure to artificial streams.
EEG and performances were significantly modified relative to other
streams since the first block of 3 min of exposure. However, contrary
to the report of De Diego Balaguer et al. (2007), no P2 increase was
observed in our study, nor N1 increase as reported in Sanders et al.
(2002). N1/P2 amplitudes are usually weak in continuous speech,
making it difficult to observe an increase especially if the syllables
used as word-onset are not plosives whose burst of energy can more
easily create a sharp perceptive onset. It is thus possible that the N1/P2
effect might depend on the acoustic characteristics of the chosen
syllables in different experiments, either because some consonant
categories are perceptively more salient in a continuous stream, or
because a choice spanning several phonetic categories with very
different acoustic characteristics may spread the response to word
onset over a larger interval blurring the sharp N1/P2. Moreover, an
increase in N1/P2 amplitude might be significantly amplified if
participants are expecting a precise syllable onset. It is the case
when words have been previously learned (Sanders et al., 2002) or
when the first syllable is acoustically salient facilitating its encoding
(Cunillera et al., 2006). In the study of De Diego Balaguer et al. (2007)
in which the artificial language corresponds to our Word stream with
pauses, the P2 increase appeared after the N400 increase and was
correlated to the correct identification of rule-words as possiblewords
in the test phase, suggesting that participants had understood the rule
and thus isolated the first and last syllable of the words. The absence
in our study of a P2 effect during familiarization, together with the
missing discrimination between rule-words and part-words during
the test phase suggests that a reliable P2 increase might be present
only when subjects become able to analyze the structure of the words
and thus may expect precise onsets. The differences between the two
studies could depend on differences in the experimental paradigms,
such as the number of streams sharing a similar structure to which
subjects were exposed to (four in the study of Diego de Balaguer et al.,
one here) that may favor learning across streams.

By contrast, when pauses were absent, there was neither any peak
at any tagged frequency for the Word stream, nor any significant
difference in the ERPs between Word and Random streams. Yet,
during the test phase following 9 min of exposure, participants
significantly distinguished words from part-words in both conditions
with andwithout pauses demonstrating that, like in Pena et al. (2002),
they have been able to learn the words exploiting their non-adjacent
transition probabilities. Crucially, the significant suppression of the
peak at the one-syllable tagged frequency demonstrates that syllables
were no more isolated but linked to other syllables contrary to
random streams. However, the product of this statistical computation
was neither translated into a stable steady-state brain response nor
into an explicit word report, as the behavioral measures during
exposure to that stream were not different from those in random
streams. Transitional probabilities were thus computed but were not
sufficient to end up with a reproducible tri-syllabic structure during
the familiarization part. The good performance in the test may suggest
that segmentation in tri-syllabic items was only explicitly realized
during the test when tri-syllabic items were presented in isolation
using the transitional probabilities between syllables implicitly
learned during exposure.

Acknowledging the radical difference in word recognition
performances when a 25 ms gap was introduced at the end of the
words, Pena et al. (2002) postulated that different brain mechanisms
were involved in both cases. In the light of our results, we can
tentatively explain the respective role of statistical and acoustic cues
in word learning: When no acoustic cues are given, transitional
probabilities between adjacent and non-adjacent syllables are
implicitly computed only limited by memory load. The absence of
tri-syllabic power peaks in Word streams without pauses and the
fact that subjects are unable to report correct tri-syllabic words in
this condition, even after 6 min of exposure, suggest that the size of
the window on which statistical distribution is computed may vary
from time to time, being reset by the subject's explicit search
strategy or by superficial contingencies. Although listeners are not
able to discriminate streams with pauses from streams without
pauses (Pena, 2002), pauses might alter perception in several ways,
by breaking coarticulation between syllables involving continuous
phonemes, by decreasing the masking effect of the following syllable
and by resetting the response to the next syllable. Such cues might
act as end- marks that limit the domain of computations to smaller
segments, like it is observed in natural speech (Christophe et al.,
2004), whose local properties would be easiest to analyze and
memorize. They can also add perceptual emphasis around word
boundaries facilitating the memorization of the syllables at the
words' edges (Endress and Bonatti, 2007). However, pauses by
themselves are not sufficient to induce a tri-syllabic segmentation as
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no tri-syllabic SSR was observed in Random stream with pauses,
suggesting that acoustic cues (as 25 ms gaps) are not processed as a
first segmentation step before statistical computations are realized,
at least in the present case of short pauses.

Pena et al. (2002) and De Diego Balaguer et al. (2007) suggested
that pauses not only favor word-learning but also induced rule
learning. This interpretation is based on the performances during the
test phase when participants have to choose between a rule-word and
a part-word as possible words in the artificial language. In our
experiment, subjects had to decide for each one of the three possible
types of items (words, rule-words and part-words) whether they
accepted it as a word or not. In a forced-choice paradigm, it is not
possible to distinguish whether the word is recognized as a word or
whether it is the part-word which is rejected. Furthermore, when
participant had to choose between rule-words and part-words as
possible words, the implicit instruction is to choose the closest item to
the learnedword structure, whereas in our experiment the decision to
accept a rule-word as a word depends on whether participants
interpret the instructions as a recognition task of heard words or as a
classification task of the possible words in this artificial language.
Because participants were asked to explicitly learn and write out the
words during the learning phase rather than to figure out the
structural properties of the stream, they may have been biased toward
a recognition strategy. The fact that participants were at chance for
rule-words confirms that the instructions were ambiguous and that
their performances for rule-words are not conclusive to determine
whether they were or not aware of the rule.

Concluding remarks

To conclude, our results underscore the role of prosodic cues (as
short pauses) in natural speech to discover words. Infant abilities to
perform statistical learning are highly supported (and not limited to
language). However, the rich and complex information contained in
speech conveys a cognitive resource problem associated to the
exponential growth of the number of computations. Limitations on
memory or other cognitive mechanisms could contribute to restrict
cognitive computations. Sensitivity to prosodic cues could be an
essential tool to limit continuous speech processing (Echols and
Newport, 1992; Gleitman and Wanner, 1982). Indeed, infants are
sensitive to different prosodic units since the first days of life on
(Hirsh-Pasek et al., 1987; Jusczyk et al., 1992) and subtle acoustic cues
have been shown to be exploitable even by young infants (Christophe
et al., 1994). Statistical computations applied within prosodic units (as
short speech chunks) can thus be a powerful tool to discover the
embedded units of speech. Here we demonstrate that, at least in
adults, subliminal prosodic-like cues can rapidly help to discover a set
of words by increasing efficiency of segmentation of artificial,
monotonous and non-sense continuous speech stream. Moreover,
we show that this learning process elicits a SSR at the frequency of
word occurrence that is significantly correlated with the successful
detection of words in the artificial speech. We therefore propose the
frequency-tagging approach as a powerful tool to track the subjective
perception of continuous speech and linguistic learning by the
underlying neural activity.
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